Koszul incidence algebras, affine semigroups, and Stanley–Reisner ideals

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

. A C ] 1 0 A pr 2 00 9 KOSZUL INCIDENCE ALGEBRAS , AFFINE SEMIGROUPS , AND STANLEY - REISNER IDEALS

We prove a theorem unifying three results from combinatorial homological and commutative algebra, characterizing the Koszul property for incidence algebras of posets and affine semigroup rings, and characterizing linear resolutions of squarefree monomial ideals. The characterization in the graded setting is via the Cohen-Macaulay property of certain posets or simplicial complexes, and in the mo...

متن کامل

Linear Koszul Duality and Affine Hecke Algebras

In this paper we prove that the linear Koszul duality equivalence constructed in a previous paper provides a geometric realization of the Iwahori-Matsumoto involution of affine Hecke algebras.

متن کامل

Indecomposable Ideals in Incidence Algebras ⋆

The elements of a finite partial order P can be identified with the maximal indecomposable two-sided ideals of its incidence algebra A, and then for two such ideals, I ≺ J ⇐⇒ IJ 6= 0. This offers one way to recover a poset from its incidence algebra. In the course of proving the above, we classify all of the two-sided ideals of A. In contemporary physical theory, the concept of a “space” or, mo...

متن کامل

Weak*-closed invariant subspaces and ideals of semigroup algebras on foundation semigroups

Let S be a locally compact foundation semigroup with identity and                          be its semigroup algebra. Let X be a weak*-closed left translation invariant subspace of    In this paper, we prove that  X  is invariantly  complemented in   if and  only if  the left ideal  of    has a bounded approximate identity. We also prove that a foundation semigroup with identity S is left amenab...

متن کامل

On the Parameterization of Primitive Ideals in Affine Pi Algebras

In their fundamental studies of the finite dimensional representations of associative algebras, Artin and Procesi proved that the primitive ideals corresponding to irreducible n-dimensional representations (for fixed n, over an algebraically closed field) can be homeomorphically parameterized by a locally closed subset of the maximal spectrum of a suitably chosen affine commutative trace ring. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 2010

ISSN: 0001-8708

DOI: 10.1016/j.aim.2010.02.005